Biocompatible Quantum Funnels for Neural Photostimulation
نویسندگان
چکیده
منابع مشابه
Solar cells using quantum funnels.
Colloidal quantum dots offer broad tuning of semiconductor bandstructure via the quantum size effect. Devices involving a sequence of layers comprised of quantum dots selected to have different diameters, and therefore bandgaps, offer the possibility of funneling energy toward an acceptor. Here we report a quantum funnel that efficiently conveys photoelectrons from their point of generation tow...
متن کاملSynthesis of CdTe quantum dots coated with biocompatible materials and investigation of their identification Properties
Fingerprint identification or dactyloscopy is a method for human identification. The impressions left by a human finger on surfaces are not visible to naked eyes (latent fingerprint); therefore, they require revelation to become visible and identified. Within the last century, several fingerprint revelation techniques such as optical, physical, and chemical were studied. These traditional metho...
متن کاملOverview of Stabilizing Ligands for Biocompatible Quantum Dot Nanocrystals
Luminescent colloidal quantum dots (QDs) possess numerous advantages as fluorophores in biological applications. However, a principal challenge is how to retain the desirable optical properties of quantum dots in aqueous media while maintaining biocompatibility. Because QD photophysical properties are directly related to surface states, it is critical to control the surface chemistry that rende...
متن کاملCombining Funnels
A new twist on an old tale.. . Abstract We enhance the well established software combining synchronization technique for shared memory multiprocessors to create combining funnels. Previous software combining methods used a statically assigned tree whose depth was logarithmic in the total number of processors in the system. The new method allows to dynamically build combining trees with depth lo...
متن کاملCompact biocompatible quantum dots functionalized for cellular imaging.
We present a family of water-soluble quantum dots (QDs) that exhibit low nonspecific binding to cells, small hydrodynamic diameter, tunable surface charge, high quantum yield, and good solution stability across a wide pH range. These QDs are amenable to covalent modification via simple carbodiimide coupling chemistry, which is achieved by functionalizing the surface of QDs with a new class of h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nano Letters
سال: 2019
ISSN: 1530-6984,1530-6992
DOI: 10.1021/acs.nanolett.9b01697